悟空视频

    在线播放云盘网盘BT下载影视图书

    量化投资: 策略与技术 - 图书

    导演:丁鹏
    《量化投资:策略与技术(修订版)》是国内少有的有关量化投资策略的著作。首先,介绍了量化投资大师西蒙斯的传奇故事(连续20年,每年赚60%)。然后,用60多个案例介绍了量化投资的各个方面的内容,主要分为策略篇与理论篇两部分。策略篇主要包括:量化选股、量化择时、股指期货套利、商品期货套利、统计套利、期权套利、算法交易和资产配置等。理论篇主要包括:人工智能、数据挖掘、小波分析、支持向量机、分形理论、随机过程及IT技术等。最后介绍了作者开发的D—Alpha量化对冲交易系统,该系统全球市场验证显示具有长期稳健的收益率。
    量化投资: 策略与技术
    图书

    量化投资: 策略与技术 - 图书

    导演:丁鹏
    《量化投资:策略与技术(修订版)》是国内少有的有关量化投资策略的著作。首先,介绍了量化投资大师西蒙斯的传奇故事(连续20年,每年赚60%)。然后,用60多个案例介绍了量化投资的各个方面的内容,主要分为策略篇与理论篇两部分。策略篇主要包括:量化选股、量化择时、股指期货套利、商品期货套利、统计套利、期权套利、算法交易和资产配置等。理论篇主要包括:人工智能、数据挖掘、小波分析、支持向量机、分形理论、随机过程及IT技术等。最后介绍了作者开发的D—Alpha量化对冲交易系统,该系统全球市场验证显示具有长期稳健的收益率。
    量化投资: 策略与技术
    图书

    量化投资: 策略与技术 - 图书

    2011
    导演:丁鹏
    《量化投资—策略与技术》是国内第一本有关量化投资策略的著作,首先介绍了量化投资大师西蒙斯的传奇故事(连续20年,每年赚60%);然后用60多个案例介绍了量化投资的各个方面的内容,主要分为策略篇与理论篇两部分,策略篇主要包括:量化选股、量化择时、股指期货套利、商品期货套利、统计套利、期权套利、算法交易和资产配置等。理论篇主要包括:人工智能、数据挖掘、小波分析、支持向量机、分形理论、随机过程及it技术等;最后介绍了作者开发的d-alpha量化对冲交易系统,该系统全球市场验证显示具有长期稳健的收益率。 《量化投资—策略与技术》适合基金经理、证券分析师、普通散户及有志于从事金融投资的各界人士阅读。
    量化投资: 策略与技术
    图书

    Python量化投资:技术、模型与策略 - 图书

    2020计算机·编程设计
    导演:赵志强 刘志伟
    全书共18章,前11章主要讲解基础知识。第1章介绍了什么是量化投资,以及为什么要用Python。第2章介绍了如何搭建基础环境,介绍了常用的一些工具。第3章讲解python的基本应用和常用的库。第4章介绍python数据分析中常用的Numpy,Scipy,Pandas。第5章介绍数据分析的基础方法。第6章介绍数据的可视化,使用matplotlib库。第7章介绍基础的金融分析方法。第8章介绍技术分析和时序序列分析,从业界和学术界两种角度来进行分析。第9章介绍了投资组合理论和由此衍生出来的多因子模型。第10章介绍了金融市场中衍生品的分析,以期货和期权为主。第11章从利率开始,介绍了债券的分析方法。从第12章开始进入实战篇。第12章讲解中国金融市场,主要针对二级市场,并介绍了针对不同市场的基本投资策略。第13章介绍了,研究策略时,所需的数据来源,开源数据和商业数据库都有介绍。并且介绍目前比较流行的python的开源数据源。第14章介绍了如何建立数据库,并且讲解针对不同数据,如何设计数据库。第15章介绍了策略研究基本概念,方法论和流程。第16章介绍了进行自动化交易的接口,并且介绍了目前比较流行的开源项目vn.py。第17章介绍了如何使用python爬取网络上数据,并进行舆情分析。第18章介绍了人工智能的基本概念和算法,并且介绍了人工智能在量化投资中的应用。
    Python量化投资:技术、模型与策略
    搜索《Python量化投资:技术、模型与策略》
    图书

    Python量化投资:技术、模型与策略 - 图书

    2020计算机·编程设计
    导演:赵志强 刘志伟
    全书共18章,前11章主要讲解基础知识。第1章介绍了什么是量化投资,以及为什么要用Python。第2章介绍了如何搭建基础环境,介绍了常用的一些工具。第3章讲解python的基本应用和常用的库。第4章介绍python数据分析中常用的Numpy,Scipy,Pandas。第5章介绍数据分析的基础方法。第6章介绍数据的可视化,使用matplotlib库。第7章介绍基础的金融分析方法。第8章介绍技术分析和时序序列分析,从业界和学术界两种角度来进行分析。第9章介绍了投资组合理论和由此衍生出来的多因子模型。第10章介绍了金融市场中衍生品的分析,以期货和期权为主。第11章从利率开始,介绍了债券的分析方法。从第12章开始进入实战篇。第12章讲解中国金融市场,主要针对二级市场,并介绍了针对不同市场的基本投资策略。第13章介绍了,研究策略时,所需的数据来源,开源数据和商业数据库都有介绍。并且介绍目前比较流行的python的开源数据源。第14章介绍了如何建立数据库,并且讲解针对不同数据,如何设计数据库。第15章介绍了策略研究基本概念,方法论和流程。第16章介绍了进行自动化交易的接口,并且介绍了目前比较流行的开源项目vn.py。第17章介绍了如何使用python爬取网络上数据,并进行舆情分析。第18章介绍了人工智能的基本概念和算法,并且介绍了人工智能在量化投资中的应用。
    Python量化投资:技术、模型与策略
    搜索《Python量化投资:技术、模型与策略》
    图书

    量化投资策略 - 图书

    2017
    导演:理查德・托托里罗
    理查德・托托里罗编著的《量化投资策略》的目标是:为读者提供一幅从量化角度绘制出来的市场投资“地图”。为了得到这幅通过实证绘制而成的投资地图,作者详尽地测试了超过120O种投资策略。书中归纳了七个投资维度:盈利性、估值、现金流、成长性、资产配置、价格动量以及危险信号,并告诉读者如何有效结合单个投资因子或组件因子,如何构建多因子策略,从而构建更全面的选股模型。最后,作者还介绍了如何将书中提出的策略有效地整合到你的投资过程中,以创造优秀的选股模型,构建自己的量化模型和投资组合,并实现超越市场的收益。本书中概括出的量化方法可以为定性投资者提供一个被证实的设计投资策略的方法,同时也可作为提高投资绩效的准则。
    量化投资策略
    搜索《量化投资策略》
    图书

    量化投资策略 - 图书

    2019经济理财·财经
    导演:周佰成 刘毅男
    随着我国资本市场的迅速发展与日臻成熟,专业投资者在市场所占比例不断上升,对于投资策略的需求也在不断提高,基于金融计量学和计算机技术的量化投资策略开始蓬勃发展。本书作者在大量参考国内外理论文献、量化基金前沿策略的基础上,结合自身多年的投资实践撰写了本书。本书致力于突出各类量化投资策略的构建和数据案例分析,包括构建多因子模型、经典价值投资策略、事件驱动策略、择时策略、商品期货CTA量化投资策略以及统计套利等,以期对量化投资从业人员有所帮助。
    量化投资策略
    搜索《量化投资策略》
    图书

    量化投资策略 - 图书

    2017
    导演:理查德・托托里罗
    理查德・托托里罗编著的《量化投资策略》的目标是:为读者提供一幅从量化角度绘制出来的市场投资“地图”。为了得到这幅通过实证绘制而成的投资地图,作者详尽地测试了超过120O种投资策略。书中归纳了七个投资维度:盈利性、估值、现金流、成长性、资产配置、价格动量以及危险信号,并告诉读者如何有效结合单个投资因子或组件因子,如何构建多因子策略,从而构建更全面的选股模型。最后,作者还介绍了如何将书中提出的策略有效地整合到你的投资过程中,以创造优秀的选股模型,构建自己的量化模型和投资组合,并实现超越市场的收益。本书中概括出的量化方法可以为定性投资者提供一个被证实的设计投资策略的方法,同时也可作为提高投资绩效的准则。
    量化投资策略
    搜索《量化投资策略》
    图书

    量化投资策略 - 图书

    2019经济理财·财经
    导演:周佰成 刘毅男
    随着我国资本市场的迅速发展与日臻成熟,专业投资者在市场所占比例不断上升,对于投资策略的需求也在不断提高,基于金融计量学和计算机技术的量化投资策略开始蓬勃发展。本书作者在大量参考国内外理论文献、量化基金前沿策略的基础上,结合自身多年的投资实践撰写了本书。本书致力于突出各类量化投资策略的构建和数据案例分析,包括构建多因子模型、经典价值投资策略、事件驱动策略、择时策略、商品期货CTA量化投资策略以及统计套利等,以期对量化投资从业人员有所帮助。
    量化投资策略
    搜索《量化投资策略》
    图书

    量化投资:数据挖掘技术与实践 - 图书

    导演:卓金武
    全书内容分为三篇。第一篇(基础篇)主要介绍数据挖掘与量化投资的关系,以及数据挖掘的概念、实现过程、主要内容、主要工具等内容。第二篇(技术篇)系统介绍了数据挖掘的相关技术及这些技术在量化投资中的应用,主要包括数据的准备、数据的探索、关联规则方法、数据回规方法、分类方法、聚类方法、预测方法、诊断方法、时间序列方法、智能优化方法等内容。第三篇(实践篇)主要介绍数据挖掘技术在量化投资中的综合应用实例,包括统计套利策略的挖掘与优化、配对交易策略的挖掘与实现、数据挖掘在股票程序化交易中的综合应用,以及基于数据挖掘技术的量化交易系统的构建。 《量化投资:数据挖掘技术与实践(MATLAB版)》的读者对象为从事投资、数据挖掘、数据分析、数据管理工作的专业人士;金融、经济、管理、统计等专业的教师和学生;希望学习MATLAB的广大科研人员、学者和工程技术人员。
    量化投资:数据挖掘技术与实践
    搜索《量化投资:数据挖掘技术与实践》
    图书
    加载中...